Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
1.
J Med Virol ; 92(6): 660-666, 2020 06.
Article in English | MEDLINE | ID: covidwho-7544

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging disease with fatal outcomes. In this study, a fundamental knowledge gap question is to be resolved by evaluating the differences in biological and pathogenic aspects of SARS-CoV-2 and the changes in SARS-CoV-2 in comparison with the two prior major COV epidemics, SARS and Middle East respiratory syndrome (MERS) coronaviruses. METHODS: The genome composition, nucleotide analysis, codon usage indices, relative synonymous codons usage, and effective number of codons (ENc) were analyzed in the four structural genes; Spike (S), Envelope (E), membrane (M), and Nucleocapsid (N) genes, and two of the most important nonstructural genes comprising RNA-dependent RNA polymerase and main protease (Mpro) of SARS-CoV-2, Beta-CoV from pangolins, bat SARS, MERS, and SARS CoVs. RESULTS: SARS-CoV-2 prefers pyrimidine rich codons to purines. Most high-frequency codons were ending with A or T, while the low frequency and rare codons were ending with G or C. SARS-CoV-2 structural proteins showed 5 to 20 lower ENc values, compared with SARS, bat SARS, and MERS CoVs. This implies higher codon bias and higher gene expression efficiency of SARS-CoV-2 structural proteins. SARS-CoV-2 encoded the highest number of over-biased and negatively biased codons. Pangolin Beta-CoV showed little differences with SARS-CoV-2 ENc values, compared with SARS, bat SARS, and MERS CoV. CONCLUSION: Extreme bias and lower ENc values of SARS-CoV-2, especially in Spike, Envelope, and Mpro genes, are suggestive for higher gene expression efficiency, compared with SARS, bat SARS, and MERS CoVs.


Subject(s)
Betacoronavirus/genetics , Cysteine Endopeptidases/genetics , Middle East Respiratory Syndrome Coronavirus/genetics , Nucleocapsid Proteins/genetics , RNA-Dependent RNA Polymerase/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/genetics , Viral Nonstructural Proteins/genetics , Animals , Base Sequence , Betacoronavirus/classification , Betacoronavirus/pathogenicity , COVID-19 , Chiroptera/microbiology , Codon Usage , Computational Biology , Coronavirus 3C Proteases , Coronavirus Envelope Proteins , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Cysteine Endopeptidases/metabolism , Eutheria/microbiology , Gene Expression , Humans , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Nucleocapsid Proteins/metabolism , Pandemics , Phosphoproteins , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , RNA-Dependent RNA Polymerase/metabolism , Severe acute respiratory syndrome-related coronavirus/classification , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2 , Sequence Homology, Nucleic Acid , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/transmission , Severe Acute Respiratory Syndrome/virology , Spike Glycoprotein, Coronavirus/metabolism , Viral Envelope Proteins/metabolism , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL